A triad-based architecture for a multipurpose Lustre filesystem at /rdlab
The research and development Lab (context)
- Founded in 2010 at the Computer Science department
- IT support for research groups only
- National and European Projects (FP7, H2020…)
- Technology transfer

The research and development Lab (Infrastructure)
- 160 researchers, 18 research groups
- HPC and Cloud services for research projects
- 400TBytes Lustre (2.12.5 + ZFS) storage
SQUARING THE CIRCLE

• **Why not Lustre?**
 - Well-known project
 - Using Lustre since 2010 (HPC service)
 - Most of our data was already in Lustre
 - Lustre provides a flexible architecture to play

• **OK, but...**
 - Misconceptions (expensive, difficult to understand...)
 - Compatibility issues (vendors and technologies)
 - Who is using Lustre as a general purpose filesystem? (Early adopter panic)
 - Undocumented experiences and good practices

LUG2021 https://rdlab.cs.upc.edu/
• **Classical Lustre setups**

- **Type A**: Several n-disk volumes OST governed by a single dedicated OSS

- **Type B (HA)**: A multiple-disk OST pair attached to a couple of OSS
THE SCIENTIFIC METHOD

• **Cooking the idea**

- Identify the main ingredients, goal(s) and constraints
- Set metrics and baselines
- Play: Combine, test and “taste”
THE SCIENTIFIC METHOD II

• **Milestones**

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Just an idea</td>
</tr>
<tr>
<td>2018</td>
<td>Lustre ZFS</td>
</tr>
<tr>
<td>2019</td>
<td>Deployment</td>
</tr>
<tr>
<td>2021</td>
<td>LUG2021</td>
</tr>
</tbody>
</table>

LUG2021 - https://rdlab.cs.upc.edu/
• **Ingredients for a triad based recipe**

- 3 physical dedicated disk servers (different model/vendors?)
- Same disk technology layout
- Dedicated high-speed low-latency network (IB + iSER)

High speed Local Area Network

- Point to Point dedicated low latency network (IB) for iSER device export
- ZFS mirror

LUG2021

https://rdlab.cs.upc.edu/
Spicing the triad

- Group alike ZFS mirrors into ZFS Stripes
- Group ZFS stripes into a 3 OST setup
- "Serve" every OST with HA and a Zpool cache disk

Diagram

- **High speed Local Area Network**
 - OSS 1
 - OSS 2
 - OSS 3
 - Corosync HA
 - Point to Point dedicated low latency network (IB) for iSER device export

OSTs

- **OST 0**
 - ZFS mirror (1+1'+1'"") A
 - ZFS mirror (2+2'+2"") B
 - ZFS mirror (3+3'+3"") C
 - ZFS mirror (4+4'+4"") D
 - ZFS mirror (5+5'+5"") E
 - ZFS mirror (6+6'+6"") F
 - ZFS mirror (7+7'+7"") G
 - ZFS mirror (8+8'+8"") H
 - ZFS mirror (9+9'+9"") I
 - ZFS mirror (10+10'+10"") J
 - ZFS mirror (11+11'+11"") K
 - ZFS mirror (12+12'+12"") L

- **OST 1**

- **OST 2**

- ZFS Stripe (A,B,C,D)
- ZFS Stripe (E,F,G,H)
- ZFS Stripe (I,J,K,L)
WHY A TRIAD-BASED ARCHITECTURE?

- **Features and flavors**

 - Customization
 - Performance (dedicated network + I/O split)
 - Data cost vs redundancy
 - Reliability (data CRC + Quorum)
 - Isolation (maintenance, disaster)
 - Rebuild impact
 - Big File support (in Lustre, size matters)
 - ZFS benefits (compression, deduplication, cache…)

LUG2021

https://rdlab.cs.upc.edu/
50 ANYS
sense limits.
REFERENCES

[10] https://www.upc.edu

[12] https://rdlab.cs.upc.edu